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Abstract
By treating the electron–ion interaction as a perturbation in the first-principles Hamiltonian, we
have calculated the density response functions of a fluid alkali metal to find an interesting
charge instability due to anomalous electronic density fluctuations occurring at some finite
wavevector Q in a dilute fluid phase above the liquid–gas critical point. Since |Q| is smaller
than the diameter of the Fermi surface, this instability necessarily impedes the electric
conduction, implying its close relevance to the metal–insulator transition in fluid alkali metals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The metal–insulator transition in fluid alkali metals such
as Rb and Cs has long been attracting attention [1, 2],
partly because this might be a faithful manifestation of the
‘Mott transition’ in its original sense [3] or the one driven
by an insufficiently screened Coulomb potential and partly
because this accompanies the liquid–gas phase transition, the
same situation as first considered in mercury by Landau and
Zeldovich [4].

In the density–temperature phase diagram of the alkali
metals, the liquid-phase region is bounded above by the critical
point and below by the triple point, as in the systems of rare-
gas atoms [5]. Above the critical point, there exists the fluid-
phase region, an interesting phase in which the metal–insulator
transition occurs. In many respects, the properties of the dense
supercritical fluid are not very different from those of the
liquid and a well known charge instability develops near the
transition from liquid to solid, as the electronic (ionic) density,
n, increases or as the Wigner–Seitz radius of electrons (ions)
in atomic units, rs , decreases. We can expect, however, to
observe a different type of charge instability closely related to
the metal–insulator transition as rs increases in the fluid phase.

Conventionally, liquid alkali metals are studied by treating
the bare electron–ion (pseudo)potential as a perturbation to
provide an effective ion–ion interaction via the sea of valence
electrons described by the three-dimensional electron gas
(3DEG) [6]. The exchange–correlation effects of the valence

electrons play an important role in the dilute fluid with large rs .
It is fortunate that in developing the first-principles calculation
based on the density functional theory useful information on
the 3DEG is now available in a wide range of rs . In this paper,
we investigate the density response of the fluid alkali metal
to find the charge instability for low densities by use of the
standard perturbation approach, together with this information
on 3DEG. Throughout this paper, we employ atomic units.

2. Response functions in the first-principles
Hamiltonian

The alkali metals composed of N electrons and N ions are well
described by the following Hamiltonian:

H = Te + Ti + Uee + Uii + Uei, (1)

with

Te =
N∑

j=1

p2
j

2m
, Ti =

N∑

j=1

P 2
j

2M
,

Uee = 1
2

∑

j �= j ′
Vee(r j − r j ′), Uii = 1

2

∑

j �= j ′
Vii(R j − R j ′),

Uei =
∑

j, j ′
Vei(r j − R j ′),

(2)

0953-8984/09/064205+06$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/6/064205
mailto:maebashi@issp.u-tokyo.ac.jp
http://stacks.iop.org/JPhysCM/21/064205


J. Phys.: Condens. Matter 21 (2009) 064205 H Maebashi and Y Takada

where {r j } and {R j} denote, respectively, electronic and
ionic coordinates, {p j} and {P j} corresponding momenta, m
and M the masses and Vee(r), Vii(R) and Vei(r) the bare
electron–electron, ion–ion and electron–ion interactions. At
long distances Vii(R) as well as Vei(r) is represented by
a purely Coulombic form, but it deviates from it at short-
range distances due to the van der Waals attraction and the
Born–Mayer repulsion between ionic cores for Vii(R) or
due to orthogonality between the valence- and core-electron
wavefunctions for Vei(r); the former contribution is weak for
alkali metals and the latter can be well captured by adopting a
suitable (local) pseudopotential Vei(r) = Vps(r). In general,
the Fourier transforms of these interactions Vαβ(q) can be
written in terms of an effective valence, Zα(q), characterizing
the long-range Coulomb interaction and a short-range part,
Uαβ(q), as

Vαβ(q) = Zα(q)Zβ(q)v(q) + Uαβ(q), (3)

where α and β denote species of the particles, e (electron)
or i (ion). Here Ze(q) = −1, Z i(q) = |Vps(q)|/v(q),
Uαβ(q) = 0 unless α = β = i, and Uii(q) represents the short-
range interaction between ionic cores. Reflecting the purely
Coulombic nature of both Vii(R) and Vei(r) at long distances,
Z i(q) → 1 and Uii(q) converges to a finite value in the limit
of q ≡ |q| → 0.

Since the first term in the right-hand side of (3) is
proportional to v(q) = 4π/q2 and gets singular at q → 0, it
is useful to write the partial number-density response function
χαβ(q, ω) in terms of its proper part �αβ(q, ω), which is
irreducible with respect to v(q) but not to Uαβ(q), as

χαβ(q, ω) = −�αβ(q, ω)

− v(q)
∑

γ,δ=e,i

�αγ (q, ω)Zγ (q)Zδ(q)χδβ(q, ω), (4)

which is rewritten as

χαβ(q, ω) = −�αβ(q, ω)

+ v(q)
∑

γ,δ=e,i

�αγ (q, ω)Zγ (q)Zδ(q)�δβ(q, ω)

1 + v(q)�Z Z (q, ω)
, (5)

where the polarization function is defined as �Z Z (q, ω) ≡∑
αβ Zα(q)Zβ(q)�αβ(q, ω). In the two-component Coulomb

system with the effective valences Zα(q), the charge density
is given by the sum of ionic and electronic valence
densities, while the (total) number density by the sum
of ionic and electronic number densities. Then, by use
of (5), the charge-density response function χZ Z (q, ω) ≡∑

αβ Zα(q)Zβ(q)χαβ(q, ω), the number-density response
function χN N (q, ω) ≡ ∑

αβ χαβ(q, ω), and the cross response
function χN Z (q, ω) ≡ ∑

αβ Zβ(q)χαβ(q, ω) are, respectively,
obtained as

χZ Z (q, ω) = − �Z Z (q, ω)

1 + v(q)�Z Z (q, ω)
, (6)

χN N (q, ω) = −�N N (q, ω) + v(q)�N Z (q, ω)�Z N (q, ω)

1 + v(q)�Z Z (q, ω)
,

(7)

χN Z (q, ω) = − �N Z (q, ω)

1 + v(q)�Z Z (q, ω)
, (8)

where �N N (q, ω) = ∑
αβ �αβ(q, ω), �N Z (q, ω) = ∑

αβ

Zβ(q)�αβ(q, ω), and �Z N (q, ω) = ∑
αβ Zα(q)�αβ(q, ω).

Some comments are in order for the so-called q-limits
of these response functions. In 3DEG or an unperturbed
electron system for (1), the charge neutrality condition and
the compressibility sum rule lead, respectively, to the relations
limq→0 χ(0)

ee (q, 0) = 0 and limq→0 �(0)
ee (q, 0) = n2κ with

the superscript (0) implying ‘unperturbed’ with respect to Uei,
where κ is the compressibility of the 3DEG. These relations
reflect a special feature of a single-component Coulomb system
with a rigid compensated-charge background such as the
3DEG in which we cannot distinguish the charge-density
response function from the number-density one. In the two-
component Coulomb system, on the other hand, there is a
difference between them and the difference leads to important
modifications on these relations. More specifically, the charge
neutrality condition leads to

lim
q→0

χZ Z (q, 0) = lim
q→0

χN Z (q, 0) = 0, (9)

while the compressibility sum rule relates the q-limit of
χN N (q, ω) to the isothermal compressibility KT of the total
electron–ion system. Then, from (5) and (7), it is not hard to
see that χαβ(q, ω) satisfies the following relations for arbitrary
α and β [7]:

lim
q→0

χαβ(q, 0) = 1
4 lim

q→0
χN N (q, 0) = −n2 KT . (10)

Note that the q-limit of χee(q, ω) does not vanish but takes
a finite value −n2 KT , although limq→0 χ(0)

ee (q, 0) = 0.
By (10), we can identify the liquid–gas phase transition from
a singularity in χαβ(q, 0), particularly in the ionic number-
density response function χii(q, 0) at q = 0, because KT

diverges at the critical point. Note also that by (9) the
singularity implying a charge instability can occur only at a
finite q .

3. Approximate response functions based on effective
ion–ion interaction

Following Ashcroft and Stroud [6], we can derive an effective
ionic Hamiltonian H̃i = Ti + Ũii + Nũ0 by applying a
perturbative method with respect to Uei in (1), where ũ0 is an
energy shift independent of {P j} and {R j} (but dependent on
n). The interaction term Ũii can be described by a pairwise sum
of effective ion–ion interactions as

Ũii = 1
2

∑

j �= j ′
Ṽii(R j − R j ′). (11)

Here the Fourier transform of the effective ion–ion interaction
Ṽii(R) is given by

Ṽii(q) = Z i(q)2v(q)/ε(q) + Uii(q), (12)

with ε(q) the static dielectric function of 3DEG defined as

ε(q) = 1 + v(q)�(0)
ee (q, 0). (13)
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Equation (12) indicates that the long-range part of the bare ion–
ion interaction Vii(q), the first term in the right-hand side of (3),
has been screened by the surrounding valence electrons, while
the short-range part Uii(q) remains intact.

We shall calculate the ionic structure factor Sii(q) in this
electron–ion system by using the effective ionic Hamiltonian.
Since ions can be considered as classical particles, the classical
version of the fluctuation-dissipation theorem relates Sii(q) to
the static response function χii(q, 0) as

χii(q, 0) = −nSii(q)/T . (14)

In the same spirit as in (4), we shall introduce �ii(q, 0), the
proper part irreducible with respect to v(q), to write χii(q, 0)

as

χii(q, 0) = −[�ii(q, 0)−1 + Z i(q)2v(q)/ε(q)]−1

= −�ii(q, 0) + v(q)Z i(q)2�ii(q, 0)2

1 + v(q)[�(0)
ee (q, 0) + Z i(q)2�ii(q, 0)] .

(15)

By comparing (15) with (5), we find that �ee(q, 0) =
�(0)

ee (q, 0) and �ei(q, 0) = �ie(q, 0) = 0 at least in the
present approximation. Substituting these equations and (14)
into (5), we obtain

χee(q, 0) = − 1

v(q)

(
1 − 1

ε(q)

)

− Z i(q)2

(
1 − 1

ε(q)

)2

nSii(q)/T, (16)

χei(q, 0) = χie(q, 0) = −Z i(q)

(
1 − 1

ε(q)

)
nSii(q)/T . (17)

From (14), (16) and (17), the static charge-density, number-
density and cross response functions are, respectively, given
by

χZ Z (q, 0) = − 1

v(q)

(
1 − 1

ε(q)

)

− Z i(q)2

ε(q)2
nSii(q)/T, (18)

χN N (q, 0) = − 1

v(q)

(
1 − 1

ε(q)

)

−
(

1 + Z i(q) − Z i(q)

ε(q)

)2

nSii(q)/T, (19)

χN Z (q, 0) = 1

v(q)

(
1 − 1

ε(q)

)

− Z i(q)

ε(q)

(
1 + Z i(q) − Z i(q)

ε(q)

)
nSii(q)/T . (20)

We can easily check that these response functions satisfy the
required conditions of (9) and (10) with limq→0 χii(q, 0) =
−nSii(0)/T = −n2 KT .

In what follows, for simplicity, we take Vii(R) = |R|−1

and Vei(r) = V (A)
ps (r), where V (A)

ps (r) is the Ashcroft’s empty-
core pseudopotential, given by

V (A)
ps (r) =

{
0 |r| < rc

−|r|−1 |r| > rc
(21)

with rc being the radius of the ionic core; this simplification
leads to Z i(q) = cos(qrc) and Uii(q) = 4π[1−cos2(qrc)]/q2.
For ε(q), we use an accurate parametrization of the diffusion
Monte Carlo data of the 3DEG at T = 0 by Moroni et al [8].

4. Comparison of mean-field approximation with
Monte Carlo simulation

We shall now solve the effective ionic Hamiltonian to obtain
Sii(q) in the mean-field approximation, one of the standard
methods in the theory of simple liquids, together with Monte
Carlo simulations.

Suppose that the effective ion–ion interaction, Ṽii(R) =
(2π2 R)−1

∫ ∞
0 dqṼii(q)q sin(q R) with R ≡ |R|, can be

expressed as the sum of a ‘reference’ part, v0(R), and a
‘perturbation’, w(R), by

Ṽii(R) = v0(R) + w(R). (22)

In the mean-field approximation, the free-energy functional
F[ni] of the ionic number density ni(R) for the system of
interest, characterized by the full potential Ṽii(R), is simply
related to that of the reference system F0[ni] by

F[ni] = F0[ni] + 1
2

∫ ∫
ni(R)w(R − R′)ni(R

′) dR dR′.

(23)
Then, we can expand the thermodynamic potential �[ni] =
F[ni] − μi

∫
ni(R) dR (with μi being the chemical potential

of ions) up to second order with respect to the ionic number-
density fluctuations ni(q) as

�[ni] = �(n) + T

2n

∑

q �=0

Sii(q)−1ni(q)ni(−q) + · · · . (24)

Here Sii(q) is the ionic structure factor in the mean-field
approximation, given by

Sii(q) = [S0(q)−1 + nw(q)/T ]−1, (25)

where S0(q) is the structure factor of the reference system and
w(q) is the Fourier transform of w(R).

The result of the present mean-field approximation
depends on how to separate the interaction into a reference
part v0(R) and a perturbation w(R). A number of separations
have been proposed so far for the Lennard-Jones potential;
among them, here we adopt the manner of Weeks, Chandler
and Andersen, usually called the WCA separation [9]. In
this separation, as shown in figure 1, the interaction is split at
R = R0, the position of the minimum of Ṽii(R), into its purely
repulsive and almost attractive parts; v0(R) = Ṽii(R) − E0

and w(R) = E0 for R < R0, while v0(R) = 0 and w(R) =
Ṽii(R) for R > R0, where E0 is the minimum value of Ṽii(R)

at R = R0. The reference system with the purely repulsive
interaction v0(R) can be effectively treated as a hard-sphere
fluid where the diameter of the hard sphere is defined as

d =
∫ ∞

0
(1 − e−v0(R)/T ) dR. (26)

3
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Figure 1. Effective ion–ion interaction Ṽii(R) for rs = 6.0 and
rc = 2.4 (the solid curve), which is divided into the reference part,
v0(q) (the chain curve), and the perturbation, w(q) (the broken
curve), in the WCA separation.

Using the analytic solution of the Percus–Yevick equation
for this hard-sphere fluid [10–12], we can obtain S0(q) and
therefore Sii(q) by (25).

Figure 2 shows the ionic structure factor Sii(q) calculated
in this mean-field approximation based on the WCA separation
(the broken curves) and by Monte Carlo simulations (the solid
curves) for temperatures and densities corresponding to the
conditions of the recent experiments for a liquid Rb [13]. Note
that for all the values of T and rs in figure 2 the Monte
Carlo results are in good accord with the experimental data,
which has not been shown here. Although the quantitative
disagreement between mean-field and Monte Carlo results can
be observed in the vicinity of the triple point (e.g. T =
373 K, rs = 5.39) and in the vicinity of the critical point
(e.g. T = 2173 K, rs = 7.56), we can find that the mean-
field approximation reproduces at least qualitative features of
the Monte Carlo results for Sii(q) such as the peak position.
In the next section, with this knowledge of the mean-field
approximation, we will investigate the charge-density response
of the system in a fluid phase above the critical point.

5. Charge instability in a fluid phase above the
critical point

As discussed in section 2, a charge instability is signaled
by a divergence in χii(q, 0) = −nSii(q)/T at q = Q ≡
|Q| with Q being a certain finite wavevector, while the
compressible instability by that at q = 0. In fact, the mean-
field approximation based on the WCA separation leads us
to the result that Sii(q) diverges for low densities as shown
in figure 3, from which the divergence is seen to occur at
q = Q ∼ 0.2 for rs = 14 (the broken curve) and rs = 16
(the chain curve), but at q = 0 for rs = 12.3 (the solid curve).
Figure 4 presents the ‘phase diagram’ in the rs–T plane in
which the charge instability occurs along the solid curve, while
the compressible instability along the broken curve, the former
preceding the latter with decreasing temperature in the shaded
region of rs > 12.3.

Figure 2. Ionic structure factor Sii(q) in a liquid phase of Rb
(rc = 2.4). The solid and broken curves represent Monte Carlo and
mean-field results, respectively.

Figure 3. Inverse of the ionic structure factor Sii(q) in the mean-field
approximation based on the WCA separation for low densities of
rs = 12.3, 14.0 and 16.0 with the core radius of rc = 2.4.

To obtain a deeper insight into this charge instability
in the dilute fluid phase of rs > 12.3, let us
consider the charge-density modulation induced by a
negative point charge put into the origin of the system.
This charge-density modulation is given by δρ(q) =
−χZ Z (q, 0)v(q) in the linear response theory, which is
a total of δρe(q) = −Ze(q)

∑
α χeα(q, 0)Zα(q)v(q) and

δρi(q) = −Z i(q)
∑

α χiα(q, 0)Zα(q)v(q) with δρe(q) and
δρi(q) being electronic and ionic induced charges, respectively.

4
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Figure 4. Charge and compressible instabilities in the mean-field
approximation based on the WCA separation for rc = 2.4. The
structure factor Sii(q) diverges at q = Q (with Q being a certain
finite momentum) along the solid curve, while at q = 0 along the
broken curve in the rs–T plane.

From (14), (16) and (17), we can write down

δρe(q) =
(

1 − 1

ε(q)

) (
1 − Z i(q)2v(q)

ε(q)
nSii(q)/T

)
, (27)

δρi(q) = Z i(q)2v(q)

ε(q)
nSii(q)/T . (28)

Figure 5 presents δρe(q) (the broken curve), δρi(q) (the chain
curve) and δρ(q) (the solid curve) at two typical points in
the rs–T plane marked by (a) the circle with a dot and (b)
the triangle with a dot in figure 4; we are interested in the
charge-density modulations for low densities in the former,
but for comparison we also show those for high densities
in the latter, which indicate a well known charge instability
related to the transition from liquid to solid. In both cases
(a) and (b), the charge neutrality condition δρ(0) = 1 is
satisfied by the fact that the external point charge is completely
screened by the electrons (|δρe(0)| > |δρi(0)|), although the
ions are highly compressible (|δρi(0)| � 5) in (a), while almost
incompressible (|δρi(0)| � 0) in (b).

A couple of notable differences exist between (a) and (b)
on this charge instability: (1) the ‘charge-ordering’ vector Q
as defined by the peak position in δρ(q) is less than 2pF,
the diameter of the Fermi surface of the electrons, in (a) but
larger than 2pF in (b); (2) the charge instability is driven
by the electrons, while the ions only screen insufficiently
the electronic ‘charge ordering’ in (a) because |δρe(Q)| >

|δρi(Q)|, but it is done by the ions with partially screening
electrons in (b) because |δρi(Q)| > |δρe(Q)|.

These differences imply that the charge instability for
low densities has a significant influence on the electronic
transport, while that for high densities does not. It is clear that
the transition from liquid to solid keeps the system metallic,
while it makes the translation symmetry broken; this can be
understood by the fact that the charge instability for high
densities is due to the localization of ions with the charge-
ordering vector Q, which corresponds to the reciprocal lattice

Figure 5. Fourier transforms of the electronic, ionic and total charge
densities induced by a negative point charge at the origin, which are
indicated by the broken, chain and solid curves, respectively, (a) for
T = 4500 K and rs = 15.0 and (b) for T = 2500 K and rs = 4.0.

vector of the solid with a definite direction, and that the
Fermi surface of electrons remains almost unchanged since
Q > 2pF. On the other hand, the charge instability for low
densities is characterized by Q < 2pF and then electrons
on the Fermi surface connected by Q have strong scattering
amplitudes with a tendency to localization, leading at least
to a decrease in the electronic conductivity. Particularly in a
fluid or gaseous phase with translation symmetry (in a different
manner from incommensurate-charge-density-wave formation
in a solid), the entire Fermi surface may be seriously affected
by Q with randomly distributed directions to preserve its
rotational invariance, suggesting a new route to understanding
of the metal–insulator transition.

6. Conclusion

We have investigated the static response functions of the fluid
alkali metal by applying a perturbation method with respect to
the electron–ion interaction to the first-principles Hamiltonian
and found a charge instability in the dilute fluid phase above
the liquid–gas critical point in the mean-field approximation
based on the WCA separation. This charge instability is due
to electronic density fluctuations at a finite wavevector Q <

2pF, implying its intimate connection with the metal–insulator
transition in fluid alkali metals.

5



J. Phys.: Condens. Matter 21 (2009) 064205 H Maebashi and Y Takada

Acknowledgments

This work is partially supported by a Grant-in-Aid for
Scientific Research in Priority Areas (No 17064004) of MEXT,
Japan.

References

[1] Mott N F 1990 Metal–Insulator Transitions (London: Taylor
and Francis) chapter 10

[2] Hensel F 1998 Phil. Trans. R. Soc. Lond. A 356 97
[3] Mott N F 1949 Proc. Phys. Soc. A 62 416
[4] Landau L D and Zeldovich G 1943 Acta Phys.-Chim. USSR

18 194

Landau L D and Zeldovich G 1965 Collected Papers of L D
Landau ed D Ter Haar (Oxford: Pergamon) p 380

[5] Hansen J P and McDonald I R 2006 Theory of Simple Liquids
(London: Elsevier) figure 1.1 in p 2

[6] Ashcroft N W and Stroud D 1978 Solid State Phys. 33 1
[7] Watabe M and Hasegawa M 1973 Properties of Liquid Metals

ed S Takeuchi (London: Taylor and Francis) p 133
[8] Moroni S, Ceperley D M and Senatore G 1995 Phys. Rev. Lett.

75 689
[9] Weeks J D, Chandler D and Andersen H C 1972 J. Chem. Phys.

54 5237
[10] Percus J K and Yevick G J 1958 Phys. Rev. 110 1
[11] Thiele E 1963 J. Chem. Phys. 39 474
[12] Wertheim M S 1963 Phys. Rev. Lett. 10 321
[13] Matsuda K, Tamura K and Inui M 2007 Phys. Rev. Lett.

98 096401

6

http://dx.doi.org/10.1098/rsta.1998.0152
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1103/PhysRevLett.75.689
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1103/PhysRev.110.1
http://dx.doi.org/10.1063/1.1734272
http://dx.doi.org/10.1103/PhysRevLett.10.321
http://dx.doi.org/10.1103/PhysRevLett.98.096401

	1. Introduction
	2. Response functions in the first-principles Hamiltonian
	3. Approximate response functions based on effective ion--ion interaction
	4. Comparison of mean-field approximation with Monte Carlo simulation
	5. Charge instability in a fluid phase above the critical point
	6. Conclusion
	Acknowledgments
	References

